Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532685

RESUMEN

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Asunto(s)
Proteínas Arqueales , Halobacteriaceae , Rodopsinas Sensoriales , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/química , Rodopsinas Sensoriales/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transducción de Señal , Proteínas Arqueales/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34445364

RESUMEN

A normally functioning nervous system requires normal extracellular potassium ion concentration ([K]o). Throughout the nervous system, several processes, including those of an astrocytic nature, are involved in [K]o regulation. In this study we investigated the effect of astrocytic photostimulation on [K]o. We hypothesized that in vivo photostimulation of eNpHR-expressing astrocytes leads to a decreased [K]o. Using optogenetic and electrophysiological techniques we showed that stimulation of eNpHR-expressing astrocytes resulted in a significantly decreased resting [K]o and evoked K responses. The amplitude of the concomitant spreading depolarization-like events also decreased. Our results imply that astrocytic membrane potential modification could be a potential tool for adjusting the [K]o.


Asunto(s)
Astrocitos/fisiología , Halobacteriaceae/metabolismo , Halorrodopsinas/genética , Neocórtex/química , Potasio/metabolismo , Animales , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Membrana Celular , Halobacteriaceae/genética , Halorrodopsinas/metabolismo , Potenciales de la Membrana , Ratones , Optogenética
3.
Nat Commun ; 12(1): 3915, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168140

RESUMEN

Memory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.


Asunto(s)
Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Complejo Nuclear Basolateral/fisiología , Encéfalo/citología , Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Potenciales Evocados Auditivos , Miedo/fisiología , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Optogenética
4.
Biochim Biophys Acta Biomembr ; 1863(8): 183637, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930372

RESUMEN

We report a simple and direct fluorimetric vesicle-based method for measuring the transport rate of the light-driven ions pumps as specifically applied to the chloride pump, halorhodopsin, from Natronomonas pharaonis (pHR). Previous measurements were cell-based and methods to determine average single channel permeability challenging. We used a water-in-oil emulsion method for directional pHR reconstitution into two different types of vesicles: lipid vesicles and asymmetric lipid-block copolymer vesicles. We then used stopped-flow experiments combined with fluorescence correlation spectroscopy to determine per protein Cl- transport rates. We obtained a Cl- transport rate of 442 (±17.7) Cl-/protein/s in egg phosphatidyl choline (PC) lipid vesicles and 413 (±26) Cl-/protein/s in hybrid block copolymer/lipid (BCP/PC) vesicles with polybutadine-polyethylene oxide (PB12PEO8) on the outer leaflet and PC in the inner leaflet at a photon flux of 1450 photons/protein/s. Normalizing to a per photon basis, this corresponds to 0.30 (±0.07) Cl-/photon and 0.28 (±0.04) Cl-/photon for pure PC and BCP/PC hybrid vesicles respectively, both of which are in agreement with recently reported turnover of ~500 Cl-/protein/s from flash photolysis experiments and with voltage-clamp measurements of 0.35 (±0.16) Cl-/photon in pHR-expressing oocytes as well as with a pHR quantum efficiency of ~30%.


Asunto(s)
Cloruros/metabolismo , Halorrodopsinas/química , Transporte Iónico/genética , Liposomas/química , Cloruros/química , Cloruros/efectos de la radiación , Halobacteriaceae/química , Halobacteriaceae/genética , Halorrodopsinas/genética , Cinética , Luz , Liposomas/metabolismo , Liposomas/efectos de la radiación
5.
Stem Cells Dev ; 29(4): 187-197, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31559914

RESUMEN

Although research involving traumatic brain injury (TBI) has traditionally focused on the acute clinical manifestations, new studies provide evidence for chronic and progressive neurological sequelae associated with TBI, highlighting the risk of persistent, and sometimes life-long, consequences for affected patients. Several treatment modalities to date have demonstrated efficacy in experimental models. However, there is currently no effective treatment to improve neural structure repair and functional recovery of TBI patients. Optogenetics represents a potential molecular tool for neuromodulation and monitoring cellular activity with unprecedented spatial resolution and millisecond temporal precision. In this review, we discuss the conceptual background and preclinical evidence of optogenetics for neuromodulation, and translational applications for TBI treatment are considered.


Asunto(s)
Proteínas Arqueales/genética , Lesiones Traumáticas del Encéfalo/genética , Channelrhodopsins/genética , Halorrodopsinas/genética , Terapia Molecular Dirigida/métodos , Optogenética/métodos , Animales , Animales Modificados Genéticamente , Proteínas Arqueales/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/terapia , Channelrhodopsins/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Halorrodopsinas/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Neuronas/metabolismo , Neuronas/patología , Optogenética/tendencias , Transmisión Sináptica , Investigación Biomédica Traslacional
6.
Elife ; 82019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31713514

RESUMEN

Nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate spinal interneurons that express the calcium-binding protein calretinin (CR). We show that these interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relay signals to lamina I projection neurons. Photoactivation of CR interneurons in vivo resulted in a significant nocifensive behavior that was morphine sensitive, caused a conditioned place aversion, and was enhanced by spared nerve injury. Furthermore, halorhodopsin-mediated inhibition of these interneurons elevated sensory thresholds. Our results suggest that dorsal horn circuits that involve excitatory CR neurons are important for the generation and amplification of pain and identify these interneurons as a future analgesic target.


Asunto(s)
Calbindina 2/genética , Interneuronas/metabolismo , Neuralgia/fisiopatología , Neuronas/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Analgésicos Opioides/farmacología , Animales , Calbindina 2/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/patología , Ratones , Ratones Transgénicos , Morfina/farmacología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Red Nerviosa/patología , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Neuralgia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Optogenética/métodos , Umbral del Dolor/efectos de los fármacos , Técnicas de Placa-Clamp , Estimulación Luminosa , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/patología , Técnicas de Cultivo de Tejidos , Transgenes
7.
Nat Commun ; 10(1): 4524, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586094

RESUMEN

A major challenge in the treatment of retinal degenerative diseases, with the transplantation of replacement photoreceptors, is the difficulty in inducing the grafted cells to grow and maintain light sensitive outer segments in the host retina, which depends on proper interaction with the underlying retinal pigment epithelium (RPE). Here, for an RPE-independent treatment approach, we introduce a hyperpolarizing microbial opsin into photoreceptor precursors from newborn mice, and transplant them into blind mice lacking the photoreceptor layer. These optogenetically-transformed photoreceptors are light responsive and their transplantation leads to the recovery of visual function, as shown by ganglion cell recordings and behavioral tests. Subsequently, we generate cone photoreceptors from human induced pluripotent stem cells, expressing the chloride pump Jaws. After transplantation into blind mice, we observe light-driven responses at the photoreceptor and ganglion cell levels. These results demonstrate that structural and functional retinal repair is possible by combining stem cell therapy and optogenetics.


Asunto(s)
Ingeniería Celular/métodos , Optogenética/métodos , Células Fotorreceptoras de Vertebrados/trasplante , Degeneración Retiniana/terapia , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula/métodos , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Células HEK293 , Halorrodopsinas/genética , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Noqueados , Degeneración Retiniana/genética , Rodopsina/genética , Transfección , Resultado del Tratamiento
8.
PLoS One ; 13(7): e0200107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29969493

RESUMEN

Optogenetics offers a unique method to regulate the activity of select neural circuits. However, the electrophysiological consequences of targeted optogenetic manipulation upon the entire circuit remain poorly understood. Analysis of the sensory-CNS-motor circuit in Drosophila larvae expressing eHpHR and ChR2-XXL revealed unexpected patterns of excitability. Optical stimulation of motor neurons targeted to express eNpHR resulted in inhibition followed by excitation of body wall contraction with repetitive stimulation in intact larvae. In situ preparations with direct electrophysiological measures showed an increased responsiveness to excitatory synaptic activity induced by sensory stimulation within a functional neural circuit. To ensure proper function of eNpHR and ChR2-XXL they were expressed in body wall muscle and direct electrophysiological measurements were obtained. Under eNpHR induced hyperpolarization the muscle remained excitable with increased amplitude of excitatory postsynaptic synaptic potentials. Theoretical models to explain the observations are presented. This study aids in increasing the understanding of the varied possible influences with light activated proteins within intact neural circuits.


Asunto(s)
Halorrodopsinas/metabolismo , Potenciales de la Membrana/fisiología , Optogenética , Transmisión Sináptica/fisiología , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Drosophila , Halorrodopsinas/genética , Larva , Neuronas Motoras/metabolismo , Movimiento/fisiología , Músculos/metabolismo , Vías Nerviosas/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Técnicas de Cultivo de Tejidos
9.
Chem Rev ; 118(21): 10629-10645, 2018 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29882660

RESUMEN

Early research on the four microbial rhodopsins discovered in the archaeal Halobacterium salinarum revealed a structural template that served as a scaffold for two different functions: light-driven ion transport and phototaxis. Bacteriorhodopsin and halorhodopsin are proton and chloride pumps, respectively, while sensory rhodopsin I and II are responsible for phototactic behavior of the archaea. Halorhodopsins have been identified in various other species. Besides this group of archaeal halorhodopsins distinct chloride transporting rhodopsins groups have recently been identified in other organism like Flavobacteria or Cyanobacteria. Halorhodopsin from Natronomonas pharaonis is the best-studied homologue because of its facile expression and purification and its advantageous properties, which was the reason to introduce this protein as neural silencer into the new field of optogenetics. Two other major families of genetically encoded silencing proteins, proton pumps and anion channels, extended the repertoire of optogenetic tools. Here, we describe the functional and structural characteristics of halorhodopsins. We will discuss the data in light of common principles underlying the mechanism of ion pumps and sensors and will review biophysical and biochemical aspects of neuronal silencers.


Asunto(s)
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Animales , Bacteriorodopsinas/genética , Sitios de Unión , Transporte Biológico , Halorrodopsinas/genética , Humanos , Modelos Moleculares , Optogenética , Procesos Fotoquímicos , Conformación Proteica
10.
Microbes Environ ; 33(1): 89-97, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29553064

RESUMEN

Light-driven ion-pumping rhodopsins are widely distributed among bacteria, archaea, and eukaryotes in the euphotic zone of the aquatic environment. H+-pumping rhodopsin (proteorhodopsin: PR), Na+-pumping rhodopsin (NaR), and Cl--pumping rhodopsin (ClR) have been found in marine bacteria, which suggests that these genes evolved independently in the ocean. Putative microbial rhodopsin genes were identified in the genome sequences of marine Cytophagia. In the present study, one of these genes was heterologously expressed in Escherichia coli cells and the rhodopsin protein named Rubricoccus marinus halorhodopsin (RmHR) was identified as a light-driven inward Cl- pump. Spectroscopic assays showed that the estimated dissociation constant (Kd,int.) of this rhodopsin was similar to that of haloarchaeal halorhodopsin (HR), while the Cl--transporting photoreaction mechanism of this rhodopsin was similar to that of HR, but different to that of the already-known marine bacterial ClR. This amino acid sequence similarity also suggested that this rhodopsin is similar to haloarchaeal HR and cyanobacterial HRs (e.g., SyHR and MrHR). Additionally, a phylogenetic analysis revealed that retinal biosynthesis pathway genes (blh and crtY) belong to a phylogenetic lineage of haloarchaea, indicating that these marine Cytophagia acquired rhodopsin-related genes from haloarchaea by lateral gene transfer. Based on these results, we concluded that inward Cl--pumping rhodopsin is present in genera of the class Cytophagia and may have the same evolutionary origins as haloarchaeal HR.


Asunto(s)
Cloruros/metabolismo , Cianobacterias/genética , Halorrodopsinas/genética , Bombas Iónicas/genética , Agua de Mar/microbiología , Archaea , Cianobacterias/clasificación , Cianobacterias/metabolismo , Escherichia coli/genética , Evolución Molecular , Transferencia de Gen Horizontal , Genoma Bacteriano , Halorrodopsinas/metabolismo , Bombas Iónicas/metabolismo , Luz , Filogenia , Rodopsina/genética
11.
Sci Rep ; 8(1): 518, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29323226

RESUMEN

Memories of fearful events can be maintained throughout the lifetime of animals. Here we showed that lesions of the lateral nucleus (LA) performed shortly after training impaired the retention of long-term memories, assessed by the concomitant measurement of two dissociable defensive responses, freezing and avoidance in rats. Strikingly, when LA lesions were performed four weeks after training, rats did not show freezing to a learned threat stimulus, but they were able to direct their responses away from it. Similar results were found when the central nucleus (CeA) was lesioned four weeks after training, whereas lesions of the basal nucleus (BA) suppressed avoidance without affecting freezing. LA and BA receive parallel inputs from the auditory cortex, and optogenetic inhibition of these terminals hampered both freezing and avoidance. We therefore propose that, at variance with the traditional serial flow of information model, long-term fearful memories recruit two parallel circuits in the amygdala, one relying on the LA-to-CeA pathway and the other relying solely on BA, which operate independently and mediate distinct defensive responses.


Asunto(s)
Complejo Nuclear Basolateral/patología , Núcleo Amigdalino Central/patología , Miedo/fisiología , Memoria/fisiología , Estimulación Acústica , Animales , Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/metabolismo , Conducta Animal , Núcleo Amigdalino Central/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Masculino , Microscopía Confocal , Ratas , Ratas Wistar
12.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G448-G457, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351398

RESUMEN

In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity. We also investigated whether there was any deleterious effect of the adenovirus on the neuronal population or the neuronal phenotype within the CeA-BNST circuitry activated during the optogenetic stimulation. In male rats, the CeA was infected with vectors expressing ChR2 or HR3.0 and fiber optic cannulae were implanted on the BNST. After 8-10 wk, the response to graded, isobaric colonic distension was measured with and without laser stimulation of CeA fibers at the BNST. Immunohistochemistry and histology were used to evaluate vector expression, neuronal integrity, and neurochemical phenotype. Photoactivation of CeA fibers at the BNST with ChR2 induced colonic hypersensitivity, whereas photoinhibition of CeA fibers at the BNST with HR3.0 had no effect on colonic sensitivity. Control groups treated with virus expressing reporter proteins showed no abnormalities in neuronal morphology, neuronal number, or neurochemical phenotype following laser stimulation. Our experimental findings reveal that optogenetic activation of discrete brain nuclei can be used to advance our understanding of complex visceral nociceptive circuitry in a freely moving rat model. NEW & NOTEWORTHY Our findings reveal that optogenetic technology can be employed as a tool to advance understanding of the brain-gut axis. Using adenoviral-mediated expression of opsins, which were activated by laser light and targeted by fiber optic cannulae, we examined central nociceptive circuits mediating visceral pain in a freely moving rat. Photoactivation of amygdala fibers in the stria terminalis with channelrhodopsin induced colonic hypersensitivity, whereas inhibition of the same fibers with halorhodopsin did not alter colonic sensitivity.


Asunto(s)
Dolor Abdominal/etiología , Amígdala del Cerebelo/fisiopatología , Colon/inervación , Optogenética , Dolor Visceral/etiología , Dolor Abdominal/genética , Dolor Abdominal/metabolismo , Dolor Abdominal/fisiopatología , Adenoviridae/genética , Amígdala del Cerebelo/metabolismo , Animales , Channelrhodopsins/biosíntesis , Channelrhodopsins/genética , Estado de Conciencia , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Vectores Genéticos , Halorrodopsinas/biosíntesis , Halorrodopsinas/genética , Láseres de Estado Sólido , Masculino , Mecanotransducción Celular , Inhibición Neural , Vías Nerviosas/fisiopatología , Optogenética/instrumentación , Presión , Ratas Endogámicas F344 , Dolor Visceral/genética , Dolor Visceral/metabolismo , Dolor Visceral/fisiopatología
13.
Nat Biomed Eng ; 2(7): 485-496, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30948823

RESUMEN

Technologies for peripheral nerve stimulation have conventionally relied on the anatomic placement of electrodes adjacent to subsets of sensory fibres or motor fibres that selectively target an end effector. Here, we demonstrate the use of optogenetics to directly target the innervating fibres of an end effector by relying on retrograde transfection of adeno-associated virus serotype 6 to restrict axonal opsin expression to the desired fibre targets. By using an in vivo screen in rats, we identify the first channelrhodopsins as well as a halorhodopsin that respond to red light in the peripheral nerve. Combining two channelrhodopsins with spectrally distinct activation profiles allowed us to drive opposing muscle activity via two-colour illumination of the same mixed nerve. We also show halorhodopsin-mediated reductions in electrically evoked muscle tremor spectrally optimized for deep peripheral nerves. Our non-invasive peripheral neurostimulator with targeted multi-fascicle resolution enables scientific and clinical exploration, such as motor control in paralysis, biomimetic sensation feedback for amputees and targeted inhibition of muscle tremor.


Asunto(s)
Channelrhodopsins/metabolismo , Optogenética , Nervios Periféricos/metabolismo , Animales , Axones/metabolismo , Channelrhodopsins/genética , Color , Dependovirus/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Miembro Posterior/patología , Luz , Opsinas/genética , Opsinas/metabolismo , Nervios Periféricos/efectos de la radiación , Ratas , Ratas Endogámicas F344 , Estimulación Eléctrica Transcutánea del Nervio
14.
Nat Biotechnol ; 35(9): 858-863, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28650460

RESUMEN

Despite recent advances in optogenetics, it remains challenging to manipulate gene expression in specific populations of neurons. We present a dual-protein switch system, Cal-Light, that translates neuronal-activity-mediated calcium signaling into gene expression in a light-dependent manner. In cultured neurons and brain slices, we show that Cal-Light drives expression of the reporter EGFP with high spatiotemporal resolution only in the presence of both blue light and calcium. Delivery of the Cal-Light components to the motor cortex of mice by viral vectors labels a subset of excitatory and inhibitory neurons related to learned lever-pressing behavior. By using Cal-Light to drive expression of the inhibitory receptor halorhodopsin (eNpHR), which responds to yellow light, we temporarily inhibit the lever-pressing behavior, confirming that the labeled neurons mediate the behavior. Thus, Cal-Light enables dissection of neural circuits underlying complex mammalian behaviors with high spatiotemporal precision.


Asunto(s)
Expresión Génica/genética , Neuronas/metabolismo , Optogenética/métodos , Animales , Calcio/metabolismo , Expresión Génica/fisiología , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Ratones , Neuronas/citología , Neuronas/fisiología
15.
Sci Rep ; 7: 40872, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098199

RESUMEN

As current clinical approaches for lower urinary tract (LUT) dysfunction such as pharmacological and electrical stimulation treatments lack target specificity, thus resulting in suboptimal outcomes with various side effects, a better treatment modality with spatial and temporal target-specificity is necessary. In this study, we delivered optogenetic membrane proteins, such as channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to bladder smooth muscle cells (SMCs) of mice using either the Cre-loxp transgenic system or a viral transfection method. The results showed that depolarizing ChR2-SMCs with blue light induced bladder contraction, whereas hyperpolarizing NpHR-SMCs with yellow light suppressed PGE2-induced overactive contraction. We also confirmed that optogenetic contraction of bladder smooth muscles in this study is not neurogenic, but solely myogenic, and that optogenetic light stimulation can modulate the urination in vivo. This study thus demonstrated the utility of optogenetic modulation of smooth muscle as a means to actively control the urinary bladder contraction with spatial and temporal accuracy. These features would increase the efficacy of bladder control in LUT dysfunctions without the side effects of conventional clinical therapies.


Asunto(s)
Síntomas del Sistema Urinario Inferior/patología , Optogenética , Vejiga Urinaria/fisiología , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dinoprostona/farmacología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/efectos de la radiación , Halorrodopsinas/genética , Técnicas In Vitro , Luz , Síntomas del Sistema Urinario Inferior/veterinaria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/efectos de la radiación , Mutagénesis Sitio-Dirigida , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Placa-Clamp , Vejiga Urinaria/citología , Micción
16.
J Cereb Blood Flow Metab ; 37(3): 837-847, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27055780

RESUMEN

Striatal neurons regulate the activity of neural progenitor cells in the subventricular zone, but the effect of striatal neuronal activity on neurogenesis after ischemic stroke is unclear. In this study, we used optogenetic tools to investigate the impact of striatal neuronal activity on the neurogenesis and functional recovery after cerebral ischemia. We transfected striatal neurons with channelrhodopsin-2 or halorhodopsin from Natronomonas so that they can be excited by 473 nm laser or inhibited by 594 nm laser, respectively. Neural inhibition but not excitation at 4-7 days after middle cerebral artery occlusion resulted in reduced atrophy volume (6.8 ± 0.7 vs 8.5 ± 1.2 mm3, p < 0.05) and better performance represented by longer sustaining time on rotarod (99.3 ± 9 vs 80.1 ± 11 s, p < 0.01) and faster moving speed (7.7 ± 2 vs 5.7 ± 1.1 cm/s, p < 0.05) in open field tests. Furthermore, neural inhibition increased the number of nestin+, BrdU+/doublecortin+ and BrdU+/NeuN+ cells ( p < 0.001) in the subventricular zone and peri-focal region, and the expression level of axon guidance factor Netrin-1 (0.39 ± 0.16 vs 0.16 ± 0.02, p < 0.05) in the peri-focal region. These data suggest that striatal neuronal activity plays an important role in regulating neurogenesis and neural-behavioral outcomes, and that inhibiting striatal neurons by optogenetics promotes the recovery after ischemic stroke in mice.


Asunto(s)
Isquemia Encefálica/terapia , Neostriado/patología , Neurogénesis , Neuronas/fisiología , Animales , Channelrhodopsins , Halorrodopsinas/genética , Halorrodopsinas/efectos de la radiación , Infarto de la Arteria Cerebral Media , Ratones , Neuronas/efectos de la radiación , Recuperación de la Función , Transfección
17.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 692-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27599860

RESUMEN

The transmembrane pump halorhodopsin in halophilic archaea translocates chloride ions from the extracellular to the cytoplasmic side upon illumination. In the ground state a tightly bound chloride ion occupies the primary chloride-binding site (CBS I) close to the protonated Schiff base that links the retinal chromophore to the protein. The light-triggered trans-cis isomerization of retinal causes structural changes in the protein associated with movement of the chloride ion. In reverse, chemical depletion of CBS I in Natronomonas pharaonis halorhodopsin (NpHR) through deprotonation of the Schiff base results in conformational changes of the protein: a state thought to mimic late stages of the photocycle. Here, crystals of Halobacterium salinarum halorhodopsin (HsHR) were soaked at high pH to provoke deprotonation of the Schiff base and loss of chloride. The crystals changed colour from purple to yellow and the occupancy of CBS I was reduced from 1 to about 0.5. In contrast to NpHR, this chloride depletion did not cause substantial conformational changes in the protein. Nevertheless, two observations indicate that chloride depletion could eventually result in structural changes similar to those found in NpHR. Firstly, the partially chloride-depleted form of HsHR has increased normalized B factors in the region of helix C that is close to CBS I and changes its conformation in NpHR. Secondly, prolonged soaking of HsHR crystals at high pH resulted in loss of diffraction. In conclusion, the conformation of the chloride-free protein may not be compatible with this crystal form of HsHR despite a packing arrangement that hardly restrains helices E and F that presumably move during ion transport.


Asunto(s)
Proteínas Arqueales/química , Cloruros/química , Halobacteriales/química , Halobacterium salinarum/química , Halorrodopsinas/química , Protones , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Cloruros/metabolismo , Cristalización , Cristalografía por Rayos X , Expresión Génica , Halobacteriales/genética , Halobacteriales/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Concentración de Iones de Hidrógeno , Luz , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Difracción de Rayos X
18.
J Biol Chem ; 291(34): 17488-17495, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27365396

RESUMEN

The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities.


Asunto(s)
Proteínas Bacterianas/química , Canales de Cloruro/química , Flavobacteriaceae/química , Halorrodopsinas/química , Luz , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cristalografía por Rayos X , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Dominios Proteicos , Relación Estructura-Actividad
19.
J Biol Chem ; 291(19): 9883-93, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26929409

RESUMEN

In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro.


Asunto(s)
Bacteriorodopsinas/metabolismo , Eubacterium/metabolismo , Halorrodopsinas/metabolismo , Bombas Iónicas/metabolismo , Transporte Iónico/efectos de la radiación , Luz , Fenómenos Fisiológicos Bacterianos , Bacteriorodopsinas/genética , Bacteriorodopsinas/efectos de la radiación , Cloruros/metabolismo , Eubacterium/efectos de la radiación , Halorrodopsinas/genética , Halorrodopsinas/efectos de la radiación , Bombas Iónicas/química , Bombas Iónicas/efectos de la radiación , Mutación/genética , Filogenia , Sodio/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
20.
Proc Natl Acad Sci U S A ; 113(8): E1089-97, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26787867

RESUMEN

The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses.


Asunto(s)
Acetilcolina/metabolismo , Conducta Animal/fisiología , Neuronas Colinérgicas/metabolismo , Corteza Prefrontal/metabolismo , Transmisión Sináptica/fisiología , Animales , Neuronas Colinérgicas/citología , Halorrodopsinas/biosíntesis , Halorrodopsinas/genética , Ratones , Ratones Transgénicos , Corteza Prefrontal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...